Harmonic analysis#

This example shows how you can postprocess a result file for an harmonic analysis using DPF-Post.

Perform required imports#

Perform required imports.

from ansys.dpf import post
from ansys.dpf.post import examples

Get Solution object#

Get the Solution object. This example loads a result file for an harmonic analysis computed in Ansys Mechanical.

example_path = examples.download_all_kinds_of_complexity()

solution = post.load_solution(examples.complex_rst)
print(solution)
Harmonic Analysis Solution object.


Data Sources
------------------------------
DPF  DataSources:
  Result files:
     result key: rst and path: /opt/hostedtoolcache/Python/3.8.13/x64/lib/python3.8/site-packages/ansys/dpf/core/examples/complex.rst
  Secondary files:


DPF Model
------------------------------
Harmonic analysis
Unit system: MKS: m, kg, N, s, V, A, degC
Physics Type: Mechanical
Available results:
     -  displacement: Nodal Displacement
     -  reaction_force: Nodal Force
     -  stress: ElementalNodal Stress
     -  elemental_volume: Elemental Volume
     -  stiffness_matrix_energy: Elemental Energy-stiffness matrix
     -  artificial_hourglass_energy: Elemental Hourglass Energy
     -  thermal_dissipation_energy: Elemental thermal dissipation energy
     -  kinetic_energy: Elemental Kinetic Energy
     -  co_energy: Elemental co-energy
     -  incremental_energy: Elemental incremental energy
     -  elastic_strain: ElementalNodal Strain
     -  elemental_heat_generation: Elemental Elemental Heat Generation
     -  structural_temperature: ElementalNodal Temperature
     -  electric_potential: Nodal Electric Potential
     -  electric_flux_density: ElementalNodal Electric flux density
     -  electric_field: ElementalNodal Electric field
------------------------------
DPF  Meshed Region:
  4802 nodes
  657 elements
  Unit: m
  With solid (3D) elements
------------------------------
DPF  Time/Freq Support:
  Number of sets: 1
  With complex values

Cumulative     Frequency (Hz) LoadStep       Substep        RPM
1              343478.200000  1              1              0.000000

This may contain complex results.

Get Result objects#

Get displacement result#

Get the displacement Result object. It contains a field for real values and a field for imaginary values.

disp_result = solution.displacement()
disp = disp_result.vector

Check number of fields#

Check the number of fields.

disp.num_fields
2

Get data from field#

Get data from a field.

disp.get_data_at_field(0)
DPFArray([[ 2.65783929e-09, -5.98949034e-10,  8.34267891e-11],
          [ 2.63846617e-09, -3.00204960e-10,  8.27306877e-11],
          [ 2.50179982e-09, -2.86371281e-10,  6.29386453e-11],
          ...,
          [-1.70840238e-09, -2.73504676e-09,  3.48706947e-11],
          [-1.57038405e-09, -2.71125223e-09,  6.79105278e-11],
          [-1.57311157e-09, -2.71904943e-09,  0.00000000e+00]])

Get maximum data value over all fields#

Get the maximum data value over all fields.

disp.max_data
DPFArray([[4.67558726e-310, 4.67558417e-310, 4.10914311e-010],
          [6.53706736e-013, 6.53416337e-013, 9.25220948e-014]])

Get minimum data value over all fields#

Get the minimum data value over all fields.

disp.min_data
DPFArray([[ 4.67558726e-310, -2.76952549e-009,  0.00000000e+000],
          [-6.53727285e-013, -6.53452004e-013, -1.66091913e-013]])

Get maximum data value over targeted field#

Get the maximum data value over a targeted field.

disp.get_max_data_at_field(0)
DPFArray([4.67558724e-310, 4.67558417e-310, 4.10914311e-010])

Get minimum data value over all fields#

Get the minimum data value over all fields.

disp.get_min_data_at_field(0)
DPFArray([4.67558724e-310, 4.67558417e-310, 0.00000000e+000])

Get stress result#

Get a stress result that deals with amplitude. It contains a field for real values and a field for imaginary values.

stress_result = solution.stress()

Check if support has complex frequencies#

Check if the support has complex frequencies.

stress_result.has_complex_frequencies()
True

Get tensor result#

Get the Result for a tensor.

stress = stress_result.tensor

# Check number of fields
# ~~~~~~~~~~~~~~~~~~~~~~
# Check the number of shell and solid elements in distinct fields. Shell and
# solid elements are in distinct fields. Thus, you have four fields: the
# solid-real one, the solid-imaginary one, the shell-real one, and the
# shell-imaginary one.

stress.num_fields
2

Get shell field#

Get the shell field.

shell_field = stress[0]
shell_field.shell_layers
<shell_layers.nonelayer: 5>

Get solid field#

Get the solid field.

solid_field = stress[1]

Plot amplitude contour#

Plot the amplitude contour.

amplitude = stress_result.tensor_amplitude
amplitude.plot_contour()
03 harmonic analysis

Get elastic strain result#

Get an elastic strain result that deals with phase. It contains a field for real values and a field for imaginary values.

elastic_strain_result = solution.elastic_strain()
elastic_strain = elastic_strain_result.tensor
# shell and solid elements are in distinct fields.
elastic_strain.num_fields
2

Define the phase. The phase must be a float value. The unit is degrees.

es_at_phase = elastic_strain_result.tensor_at_phase(39.0)
es_at_phase.max_data
es_at_phase.num_fields
real_field = elastic_strain_result.tensor_at_phase(0.0)
img_field = elastic_strain_result.tensor_at_phase(90.0)

If the result file contains results, you can use this method to get the elastic strain result.

print(solution.elastic_strain())
Complex tensor object.

Tensor object.

Object properties:
 - location   : Nodal

Complex elastic strain object.

Total running time of the script: ( 0 minutes 0.837 seconds)

Gallery generated by Sphinx-Gallery