Get base and duplicate sectors (real and imaginary) results for modal cyclic symmetry#

This example shows how to extract results from a modal cyclic symmetry model.

Perform required imports#

This example uses a supplied file that you can get using the examples module.

from ansys.dpf import post
from ansys.dpf.post import examples

Get Simulation object#

Get the Simulation object that allows access to the result. The Simulation object must be instantiated with the path for the result file. For example, "C:/Users/user/my_result.rst" on Windows or "/home/user/my_result.rst" on Linux.

example_path = examples.download_modal_cyclic()
simulation = post.ModalMechanicalSimulation(example_path)

# print the simulation to get an overview of what's available
print(simulation)
Modal Mechanical Simulation.


Data Sources
------------------------------
/opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/ansys/dpf/core/examples/result_files/cyclic/modal_cyclic.rst

DPF Model
------------------------------
Modal analysis
Unit system: MKS: m, kg, N, s, V, A, degC
Physics Type: Mechanical
Available results:
     -  displacement: Nodal Displacement
     -  reaction_force: Nodal Force
     -  stress: ElementalNodal Stress
     -  elastic_strain: ElementalNodal Strain
     -  element_euler_angles: ElementalNodal Element Euler Angles
------------------------------
DPF  Meshed Region:
  928 nodes
  3836 elements
  Unit: m
  With solid (3D) elements
------------------------------
DPF  Time/Freq Support:
  Number of sets: 48
Cumulative     Frequency (Hz) LoadStep       Substep        Harmonic index
1              51369.575105   1              1              0.000000
2              114291.419744  1              2              0.000000
3              238849.856755  1              3              0.000000
4              254031.324493  1              4              0.000000
5              337729.470910  1              5              0.000000
6              348699.692284  1              6              0.000000
7              51970.152101   2              1              1.000000
8              51970.152101   2              2              -1.000000
9              126647.471593  2              3              -1.000000
10             126647.471593  2              4              1.000000
11             239807.889703  2              5              -1.000000
12             239807.889703  2              6              1.000000
13             54198.644112   3              1              2.000000
14             54198.644112   3              2              -2.000000
15             157264.852222  3              3              -2.000000
16             157264.852222  3              4              2.000000
17             242073.194077  3              5              -2.000000
18             242073.194077  3              6              2.000000
19             59105.565170   4              1              3.000000
20             59105.565170   4              2              -3.000000
21             194873.849513  4              3              -3.000000
22             194873.849513  4              4              3.000000
23             241988.808784  4              5              3.000000
24             241988.808784  4              6              -3.000000
25             67744.544169   5              1              4.000000
26             67744.544169   5              2              -4.000000
27             218600.039108  5              3              -4.000000
28             218600.039108  5              4              4.000000
29             229679.308122  5              5              4.000000
30             229679.308122  5              6              -4.000000
31             80576.477155   6              1              5.000000
32             80576.477155   6              2              -5.000000
33             192985.645574  6              3              -5.000000
34             192985.645574  6              4              5.000000
35             245990.772448  6              5              5.000000
36             245990.772448  6              6              -5.000000
37             97381.706833   7              1              6.000000
38             97381.706833   7              2              -6.000000
39             166306.784163  7              3              -6.000000
40             166306.784163  7              4              6.000000
41             259986.167834  7              5              6.000000
42             259986.167834  7              6              -6.000000
43             117422.022015  8              1              7.000000
44             117422.022015  8              2              -7.000000
45             141309.163007  8              3              -7.000000
46             141309.163007  8              4              7.000000
47             273449.890447  8              5              -7.000000
48             273449.890447  8              6              7.000000

Get base and duplicate sectors displacement results#

With expand_cyclic=False, the result providers (stress, displacement, and so on) return results for base and duplicate sectors for a cyclic symmetry model.

# Create displacement operator
u_cyc = simulation.displacement(all_sets=True, expand_cyclic=False)

The output dataframe print displays the organization of the data. The label “base_sector” gives access to base sectors results with base_sector=True and duplicate sector with base_sector=False for all modes. The print also displays that there are no duplicate sectors for the first 6 modes. Indeed, modes with harmonic index 0 have 0.0 displacement, stresses… on duplicate sectors.

# print(u_cyc)
print(simulation.time_freq_support)

s_cyc = simulation.stress_eqv_von_mises_nodal(all_sets=True, expand_cyclic=False)
# plot mode 7 base sector (real) result
s_cyc.plot(set_ids=7, base_sector=1)

# plot mode 7 duplicate sector (imaginary) result
s_cyc.plot(set_ids=7, base_sector=0)
  • 05 modal cyclic no expansion
  • 05 modal cyclic no expansion
DPF  Time/Freq Support:
  Number of sets: 48
Cumulative     Frequency (Hz) LoadStep       Substep        Harmonic index
1              51369.575105   1              1              0.000000
2              114291.419744  1              2              0.000000
3              238849.856755  1              3              0.000000
4              254031.324493  1              4              0.000000
5              337729.470910  1              5              0.000000
6              348699.692284  1              6              0.000000
7              51970.152101   2              1              1.000000
8              51970.152101   2              2              -1.000000
9              126647.471593  2              3              -1.000000
10             126647.471593  2              4              1.000000
11             239807.889703  2              5              -1.000000
12             239807.889703  2              6              1.000000
13             54198.644112   3              1              2.000000
14             54198.644112   3              2              -2.000000
15             157264.852222  3              3              -2.000000
16             157264.852222  3              4              2.000000
17             242073.194077  3              5              -2.000000
18             242073.194077  3              6              2.000000
19             59105.565170   4              1              3.000000
20             59105.565170   4              2              -3.000000
21             194873.849513  4              3              -3.000000
22             194873.849513  4              4              3.000000
23             241988.808784  4              5              3.000000
24             241988.808784  4              6              -3.000000
25             67744.544169   5              1              4.000000
26             67744.544169   5              2              -4.000000
27             218600.039108  5              3              -4.000000
28             218600.039108  5              4              4.000000
29             229679.308122  5              5              4.000000
30             229679.308122  5              6              -4.000000
31             80576.477155   6              1              5.000000
32             80576.477155   6              2              -5.000000
33             192985.645574  6              3              -5.000000
34             192985.645574  6              4              5.000000
35             245990.772448  6              5              5.000000
36             245990.772448  6              6              -5.000000
37             97381.706833   7              1              6.000000
38             97381.706833   7              2              -6.000000
39             166306.784163  7              3              -6.000000
40             166306.784163  7              4              6.000000
41             259986.167834  7              5              6.000000
42             259986.167834  7              6              -6.000000
43             117422.022015  8              1              7.000000
44             117422.022015  8              2              -7.000000
45             141309.163007  8              3              -7.000000
46             141309.163007  8              4              7.000000
47             273449.890447  8              5              -7.000000
48             273449.890447  8              6              7.000000

Get displacement results on the first sector with a cyclic phase#

with phi=0°

u_cyc = simulation.displacement(all_sets=True, expand_cyclic=[1])
u_cyc.plot()

# with phi=90°
u_cyc = simulation.displacement(
    all_sets=True, expand_cyclic=[1], phase_angle_cyclic=90.0
)
u_cyc.plot()

# with phi=45°
u_cyc = simulation.displacement(
    all_sets=True, expand_cyclic=[1], phase_angle_cyclic=45.0
)
u_cyc.plot()
  • 05 modal cyclic no expansion
  • 05 modal cyclic no expansion
  • 05 modal cyclic no expansion

Get nodal stress results on the first sector with a cyclic phase#

s_cyc = simulation.stress_eqv_von_mises_nodal(
    all_sets=True, expand_cyclic=[1], phase_angle_cyclic=45.0
)
print(s_cyc)
s_cyc.plot()
05 modal cyclic no expansion
 results  S_VM (Pa)                                                        ...
 set_ids          1          2          3          4          5          6 ...
node_ids                                                                   ...
     225 6.7583e+12 1.7719e+13 1.4254e+14 2.0944e+14 1.4367e+15 2.8827e+14 ...
     234 1.3612e+13 1.9299e+13 1.2883e+14 2.3331e+14 1.2463e+15 6.9698e+14 ...
     235 1.7888e+13 2.7823e+13 1.2641e+14 2.0943e+14 1.0789e+15 7.6976e+14 ...
     732 9.2833e+12 3.3555e+13 1.5368e+14 2.1823e+14 1.2654e+15 2.7051e+14 ...
       7 2.6513e+13 2.9169e+13 2.1806e+14 1.1260e+14 8.5468e+14 6.8131e+14 ...
      36 2.7791e+13 1.4241e+13 1.6849e+14 1.2553e+14 9.7302e+14 8.2799e+14 ...
     ...        ...        ...        ...        ...        ...        ... ...

Get elemental_nodal stress results on the first sector with a cyclic phase#

Elemental nodal is the default result location for stress and strain.

s_cyc = simulation.stress(set_ids=[7], expand_cyclic=[1], phase_angle_cyclic=45.0)
print(s_cyc)

# To average the result for each element
to_elemental = simulation.stress_elemental(
    set_ids=[7], expand_cyclic=[1], phase_angle_cyclic=45.0
)
print(to_elemental)
to_elemental.plot()
05 modal cyclic no expansion
               results      S (Pa)
               set_ids           7
                  node           0           1           2           3
element_ids components
       1859         XX -1.0954e+12 -1.0954e+12 -1.0954e+12 -1.0954e+12
                    YY  2.4527e+12  2.4527e+12  2.4527e+12  2.4527e+12
                    ZZ  7.8873e+12  7.8873e+12  7.8873e+12  7.8873e+12
                    XY  1.8877e+13  1.8877e+13  1.8877e+13  1.8877e+13
                    YZ  2.4626e+12  2.4626e+12  2.4626e+12  2.4626e+12
                    XZ -8.5112e+12 -8.5112e+12 -8.5112e+12 -8.5112e+12
        ...        ...         ...         ...         ...         ...


               results      S (Pa)
               set_ids           7
element_ids components
       1859         XX -1.0954e+12
                    YY  2.4527e+12
                    ZZ  7.8873e+12
                    XY  1.8877e+13
                    YZ  2.4626e+12
                    XZ -8.5112e+12
        ...        ...         ...

Get nodal stress results expanded#

s_cyc = simulation.stress_eqv_von_mises_nodal(set_ids=[7])
s_cyc.plot()
05 modal cyclic no expansion

Total running time of the script: (0 minutes 5.983 seconds)

Gallery generated by Sphinx-Gallery