Static analysis#

This example shows how you can post-process a result file for a static analysis using PyDPF-Post.

Perform required imports#

Perform required imports.

from ansys.dpf import post
from ansys.dpf.post import examples

Get Solution object#

Get the Solution object. This example loads a result file for a static analysis computed in Ansys Mechanical.

example_path = examples.download_all_kinds_of_complexity()

solution = post.load_solution(example_path)
print(solution)
Static Analysis Solution object.


Data Sources
------------------------------
DPF  DataSources:
  Result files:
     result key: rst and path: /opt/hostedtoolcache/Python/3.10.15/x64/lib/python3.10/site-packages/ansys/dpf/core/examples/result_files/testing/allKindOfComplexity.rst
  Secondary files:


DPF Model
------------------------------
Static analysis
Unit system: MKS: m, kg, N, s, V, A, degC
Physics Type: Mechanical
Available results:
     -  displacement: Nodal Displacement
     -  reaction_force: Nodal Force
     -  elemental_summable_miscellaneous_data: Elemental Elemental Summable Miscellaneous Data
     -  element_nodal_forces: ElementalNodal Element nodal Forces
     -  stress: ElementalNodal Stress
     -  elemental_volume: Elemental Volume
     -  stiffness_matrix_energy: Elemental Energy-stiffness matrix
     -  artificial_hourglass_energy: Elemental Hourglass Energy
     -  thermal_dissipation_energy: Elemental thermal dissipation energy
     -  kinetic_energy: Elemental Kinetic Energy
     -  co_energy: Elemental co-energy
     -  incremental_energy: Elemental incremental energy
     -  elastic_strain: ElementalNodal Strain
     -  thermal_strain: ElementalNodal Thermal Strains
     -  thermal_strains_eqv: ElementalNodal Thermal Strains eqv
     -  swelling_strains: ElementalNodal Swelling Strains
     -  element_euler_angles: ElementalNodal Element Euler Angles
     -  elemental_non_summable_miscellaneous_data: Elemental Elemental Non Summable Miscellaneous Data
     -  structural_temperature: ElementalNodal Structural temperature
     -  contact_status: ElementalNodal Contact Status
     -  contact_penetration: ElementalNodal Contact Penetration
     -  contact_pressure: ElementalNodal Contact Pressure
     -  contact_friction_stress: ElementalNodal Contact Friction Stress
     -  contact_total_stress: ElementalNodal Contact Total Stress
     -  contact_sliding_distance: ElementalNodal Contact Sliding Distance
     -  contact_gap_distance: ElementalNodal Contact Gap Distance
     -  contact_surface_heat_flux: ElementalNodal Total heat flux at contact surface
     -  contact_status_changes: ElementalNodal Contact status changes
     -  contact_fluid_penetration_pressure: ElementalNodal Fluid Penetration Pressure
------------------------------
DPF  Meshed Region:
  15129 nodes
  10294 elements
  Unit: m
  With solid (3D) elements, shell (2D) elements, shell (3D) elements, beam (1D) elements
------------------------------
DPF  Time/Freq Support:
  Number of sets: 1
Cumulative     Time (s)       LoadStep       Substep
1              1.000000       1              1

Get Result objects#

Get displacement result#

Get the displacement Result object.

disp_result = solution.displacement()
disp = disp_result.vector
print(disp)
Displacement result.

This result has been computed using dpf.core.Operator objects, which
have been chained together according to the following list:
- U: Result operator. Compute the desired result.

Check number of fields#

Check the number of fields.

print(disp.num_fields)
1

Get data from field#

Get data from a field.

print(disp.get_data_at_field(0))
[[ 9.84182297e-06  5.13025031e-06 -6.66435651e-07]
 [ 9.95996777e-06  4.93526360e-06 -6.25236961e-07]
 [ 9.93154893e-06  5.88552090e-06 -7.83251832e-07]
 ...
 [ 5.00000000e-03 -1.54556837e-04  0.00000000e+00]
 [ 5.00000000e-03 -1.56813550e-04  0.00000000e+00]
 [ 5.00000000e-03 -1.66125455e-04  0.00000000e+00]]

Get maximum data value over all fields#

Get the maximum data value over all fields.

print(disp.max_data)
[[8.50619058e+04 1.04659292e+01 3.73620870e+05]]

Get minimum data value over all fields#

Get the minimum data value over all fields.

print(disp.min_data)
[[-1.82645944e-06 -1.04473039e+01 -2.94677257e-04]]

Get maximum data value over targeted field#

Get the maximum data value over a targeted field.

print(disp.get_max_data_at_field(0))
[8.50619058e+04 1.04659292e+01 3.73620870e+05]

Get minimum data value over all fields#

Get the minimum data value over all fields.

print(disp.get_min_data_at_field(0))
[-1.82645944e-06 -1.04473039e+01 -2.94677257e-04]

Get stress result#

Get the stress Result object for a tensor.

stress_result = solution.stress()
stress = stress_result.tensor

Check number of fields#

Check the number of shell and solid elements in distinct fields.

print(stress.num_fields)
2

Get shell field#

Get the shell field.

shell_field = stress[0]
print(shell_field.shell_layers)
shell_layers.nonelayer

Get solid field#

Get the solid field.

solid_field = stress[1]

Plot contour#

Plot the contour.

stress.plot_contour()
02 static analysis

Get elastic strain result#

Get an elastic strain result.

elastic_strain_result = solution.elastic_strain()
elastic_strain = elastic_strain_result.tensor

Check number of fields#

Check the number of shell and solid elements in distinct fields.

print(elastic_strain.num_fields)
2

If the result file contains results, you can use this method to get the elastic strain result.

print(solution.plastic_strain())
Tensor object.

Object properties:
 - location   : Nodal

Plastic strain object.

You can also use this method to get the temperature result.

print(solution.structural_temperature())
Scalar object.

Object properties:
 - location   : Nodal

Structural temperature object.

Total running time of the script: (0 minutes 1.215 seconds)

Gallery generated by Sphinx-Gallery